If it's not what You are looking for type in the equation solver your own equation and let us solve it.
497000=t+0.001t^2
We move all terms to the left:
497000-(t+0.001t^2)=0
We get rid of parentheses
-0.001t^2-t+497000=0
We add all the numbers together, and all the variables
-0.001t^2-1t+497000=0
a = -0.001; b = -1; c = +497000;
Δ = b2-4ac
Δ = -12-4·(-0.001)·497000
Δ = 1989
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1989}=\sqrt{9*221}=\sqrt{9}*\sqrt{221}=3\sqrt{221}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-3\sqrt{221}}{2*-0.001}=\frac{1-3\sqrt{221}}{-0.002} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+3\sqrt{221}}{2*-0.001}=\frac{1+3\sqrt{221}}{-0.002} $
| 7t+3t+20=90 | | 4(5t-7)=11t+2 | | x-334=-10 | | 2x-5=-7.2111 | | -125-x=-5 | | (7*10)+(25*2)=5m*6 | | -7=x-200 | | 2x+10=x-4=21 | | b+42=45 | | -15-x=50 | | -2/3=-1/3x+3/5 | | 2x-5=7.2111 | | +5x2=98.2 | | 30x=-94 | | 6-7=10*n | | -44=x-40 | | -44=x-50 | | a^2+10a+13=0 | | 10(x+11)-100=120 | | -26=x-13 | | -9-7x=5- | | 3=x-88 | | 19r-22=-78=18r | | 10x-10x-50=15 | | 3x+14=-17 | | x-67=-70 | | -14x+14=-154+7 | | 1-42n=41-47n | | d=-6d^2+102d+96 | | 88-8x=-18x-132 | | -68v+53=197-50v | | -80=x-95 |